Confirmatory mixture models in a developmental context

Karen Draney & Mark Wilson UC Berkeley

Talk Outline

- "Exploratory" versus "Confirmatory" models
- Theory and purpose behind the saltus model
- Specifics of the saltus model
- Example of a saltus analysis: Measuring deductive reasoning

One way to look at mixture models

- Models with more exploratory features
 - Rost's mixed Rasch model (other models mentioned are formally submodels of this)
- Models with more confirmatory features
 - Mislevy and Verhelst's LLTM-based model
 - The saltus model (Wilson, Draney)

The saltus model

- More confirmatory in nature
- Originally developed to investigate developmental theories
 - E.g. Piagetian/neo-Piagetian
- Most useful in strongly theoretical contexts

Model structure

- H groups of persons
 - Person group membership is latent
 - Groups are ordered from lower to higher (developmentally)
- H classes of items
 - Item group membership known a priori
 - Items represent the first group at which a person has all of the skills to correctly answer the item
 - Not required that there be the same number of groups and classes, but it is commonly the case

Our example application

- Data collected by Spiel, Glück, & Gössler (2001)
- Instrument measuring deductive reasoning
- Contains items of the following types (types crossed to produce 24 items total)
 - Modus Ponens, Modus Tonens, Negation of Antecedent, Affirmation of Consequent
 - Concrete, Abstract, Counterfactual
 - With and without negation
- Possible responses: Yes, Perhaps, No

Structure of items, part 1

General Form	Example	Types of Inference
A, therefore B.	Klaus is ill. Correct inference: Klaus is lying in his bed.	Affirmation of the Antecedent = Modus Ponens (MP)
Not A, therefore B or not B.	Klaus is not ill. Correct inference: Perhaps Klaus is lying in his bed, perhaps not.	Negation of the Antecedent (NA)
B, therefore A or not A.	Klaus lies in his bed. Correct inference: Perhaps Klaus is ill, perhaps not.	Affirmation of the Consequent (AC)
Not B, therefore not A.	Klaus does not lie in his bed. Correct inference: Klaus is not ill.	Negation of the Consequent = Modus Tollens (MT)

Structure	of items.	, part 2
-----------	-----------	----------

	Concrete	Abstract	Counterfactual
Without negation of antecedent	If the sun shines, Tina wears a red skirt.	If Y belongs to group F, Y has attitude g.	If it is evening, the sun rises.
With negation of antecedent	If the sun does not shine, Peter wears blue trousers.	If X does not belong to group B, X has attitude c.	If it is not evening, the sun sets.

From Spiel, C. & Glück, J. (in press). A computer based test of competence profile and competence level in deductive reasoniing E. Klieme & D. Leutner (Eds), Assessment of Competencies in educational contexts: State of the art and future prospects. Göttingen: Hogrefe.

- Item difficulties
 - Ranged from -3.15 to -0.85 for Class 1 $\,$
 - Ranged from 0.17 to 3.52 for Class 2
- τ parameter = 4.28 (0.05)
- Means (standard deviations)
 - Class 1: -0.39 (0.41)
 - Class 2: -1.62 (1.05)
- Proportions in class
 - Class 1: 0.43
 - Class 2: 0.57

Example pe	ersons	
Response string	P(class 1)	P(class 2)
111101111111000000000000000000000000000	1.00	0.00
111111101100111101111110	0.00	1.00
00000000000111111111000	0.00	1.00
000010001100100000000000	0.01	0.99

Results from Model 2					
• Item difficult	ties simila	to Model 1			
Saltus parameters	(standard er	rors)			
0.000 (0.000)	0.000 (0.000) 0.0	00 (0.000)		
0.000 (0.000)	4.878 (0.819) 7.8	42 (0.264)		
0.000 (0.000)	3.312 (5.645) 7.1	99 (0.694)		
	CLASS 1	CLASS 2	CLASS 3		
MEANS	-0.285	-1.645	-2.749		
SDs	0.775	0.833	1.614		
PROPORTIONS	0.307	0.509	0.184		

Model 2, continued

- Interpretation here more complex
- Persons who scored low on both class 2 and class 3 items and high on class 1 items were in class 1
- Persons who scored high on class 3 items (regardless of other scores) were in class 3
- Other persons were in class 2, a mixed class

